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Abstract 8 

Floods are among India's most frequently occurring natural disasters, which disrupt all aspects of socio-economic 9 

well-being. A large population is affected by floods during almost every summer monsoon season in India, leaving 10 

its footprint through human mortality, migration, and damage to agriculture and infrastructure. Despite the 11 

massive imprints of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. 12 

Using hydrological and hydrodynamical models, we reconstructed sub-basin level observed floods for the 1901-13 

2020 period. Our modelling framework includes the influence of 51 major reservoirs that affect flow variability 14 

and flood inundation. Sub-basins in the Ganga and Brahmaputra River basins witnessed the greatest flood extent 15 

during the worst flood in the observational record. Major floods in the sub-basins of the Ganga and Brahmaputra 16 

occur during the late summer monsoon season (August-September). Beas, Brahmani, upper Satluj, Upper 17 

Godavari, Middle and Lower Krishna, and Vashishti sub-basins are among the most influenced by the dams, while 18 

Beas, Brahmani, Ravi, and Lower Satluj are among the most impacted by floods and the presence of dams. 19 

Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghara are India's sub-basins with the highest flood risk. 20 

Our findings have implications for flood mitigation in India. 21 

1. Introduction 22 

Flood risk to both natural and human systems is projected to increase due to climate change (IPCC, 2014, 2022). 23 

Extreme weather and climate extremes have increased under warming climate, leading to an increased frequency 24 

of natural hazards like floods, droughts, heat waves, cyclones, and heavy rains. Hydroclimatic extremes affect 25 

humans and infrastructure (Eidsvig et al., 2017; Peduzzi et al., 2009). Due to high vulnerability and lower adaptive 26 

capacity, developing countries are often the most impacted by extreme weather events. Further, developing 27 

countries usually take longer to recover from the hazards due to low climate resilience. Globally, floods are among 28 

the most devastating natural hazards (Ghosh & Kar, 2018). Among all flood types, riverine floods occur most 29 

frequently (Kimuli et al., 2021) and often cause substantial damage to agriculture and infrastructure. A 30 

considerable fraction of the population and infrastructure are exposed to flooding, which will also increase due to 31 

the projected increase in the magnitude and frequency of floods (Winsemius et al., 2018).  32 

The increase in flood magnitude due to the warming climate has resulted in considerable economic losses (C. M. 33 

R. Mateo et al., 2014; Willner et al., 2018). The total financial loss will likely increase by 17% in the next 20 years 34 

due to climate change (Willner et al., 2018). Besides agriculture, floods significantly affect the built environment 35 

and transportation infrastructure (Kalantari et al., 2014). For instance, more than 7% of road and railway assets 36 
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globally are exposed to a 100-year return period flood (Koks et al., 2019). In Asia, about 75% of the population 37 

is exposed to riverine floods (Varis et al., 2022). India falls among the top ten most flood-affected countries in 38 

Asia and the Pacific (Kimuli et al., 2021). In addition, India is also among the top-ten countries that experienced 39 

the highest human mortality due to floods. Considerable population exposure, climate change, and rapid growth 40 

and development in flood-prone areas contribute to increased losses from floods. 41 

In India, state administration takes decisions to mitigate floods while the central government provides financial 42 

aid under severe conditions (Jain et al., 2017). The state authorities develop action plans to minimize flood 43 

damage. Therefore, identifying the regions with higher flood risk is essential for planning and mitigation. Flood 44 

impacts can be quantified according to the affected population, gross domestic product (GDP), and agricultural 45 

practices (Ward et al., 2013). The flood risk assessment framework suggested by the Intergovernmental Panel on 46 

Climate Change (IPCC) has been extensively applied at the regional and global scales (Allen et al., 2016; IPCC, 47 

2014; Roy et al., 2021). The risk can be quantified as a function of vulnerability, hazard, and exposure (IPCC, 48 

2014). To control the risk, reducing vulnerability is considered a short to the mid-term goal (Mishra et al., 2022), 49 

while reducing hazards and exposure are long-term goals (Birkmann & Welle, 2015). Flood risk assessment can 50 

assist in identifying the regions at high risk due to higher vulnerability, hazard, and exposure, which can be used 51 

for developing a framework, methodology, and guidelines for flood mitigation and damage assessment.  52 

A flood risk assessment performed on a global scale may not help in identifying the flood risk-prone regions at a 53 

country scale due to the coarser spatial resolution (Bernhofen et al., 2022). Due to complex geomorphological 54 

characteristics and diverse climatic conditions, India is considered a relatively high flood-risk region (Hochrainer-55 

Stigler et al., 2021). Therefore, estimating flood risk on a finer scale (e.g. sub-basin level) is essential for reliable 56 

flood risk assessment. There have been studies on regional or river basin scales (Allen et al., 2016; Ghosh & Kar, 57 

2018; Roy et al., 2021); however, those do not provide flood risk at a sub-basin scale in India. In addition, the 58 

impact assessment of floods on transport infrastructure (rail and road infrastructure) still needs to be improved in 59 

the country (Pathak et al., 2020; Singh et al., 2018). In addition, the role of dams and reservoirs in the flood risk 60 

assessment should be addressed (Hirabayashi et al., 2013; Yamazaki et al., 2018). Dams and reservoirs 61 

considerably influence streamflow variability and can attenuate flood peaks (Dang et al., 2019; Vu et al., 2022; 62 

Zajac et al., 2017). In contrast, dam operations and decisions can also worsen the flood situation in the downstream 63 

regions. For instance, recent flooding in Kerala and Chennai was partly attributed to reservoir operations (Mishra 64 

& Shah, 2018). India has more than 5300 large dams regulating river flow, affecting ecosystems, natural resources, 65 

and livelihoods (Acreman, 2000). Reservoirs impact flow regulation, magnitude, timing, and extent of flooding 66 

in the downstream regions. Therefore, flood risk assessment without considering the role of reservoirs can be 67 

inappropriate in the basins that are highly affected by the presence of dams.  68 

We use the H08 (Hanasaki et al., 2018) global hydrological model combined with the CaMa-Flood (Yamazaki et 69 

al., 2011) model for the sub-basin level flood risk assessment in India considering the role of reservoirs. The 70 

CaMa-Flood model combined with the H08 model has been used for several river basins globally (Boulange et 71 

al., 2021; C. M. R. Mateo et al., 2013). The CaMa-Flood model performs well in simulating flood dynamics 72 

(Chaudhari and Pokhrel, 2022; H. Dang et al., 2022; Gaur & Gaur, 2018; Hirabayashi et al., 2013, 2021; Yamazaki 73 

et al., 2018; Yang et al., 2019). The CaMa-Flood model takes runoff as input simulated from any hydrological 74 

model and can simulate flood depth and inundation. In India, almost all the major rivers are influenced by 75 
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reservoirs (Lehner et al., 2011). Therefore, the major scientific questions that we address are: 1) How does the 76 

flood risk vary at the sub-basin scale in India for the observed worst floods that occurred during the 1901-2020 77 

period? 2) Which are the sub-basins where the presence of reservoirs considerably influences the flood risk? To 78 

address these questions, we use long-term observations (1901-2020) from India Meteorological Department 79 

(IMD) along with a hydrological modelling framework. 80 

2. Data and Methods 81 

2.1 Datasets 82 

We used observed gridded precipitation (Pai et al., 2014) and daily maximum and minimum temperatures 83 

(Srivastava et al., 2009) from India Meteorological Department (IMD). We obtained gridded daily precipitation 84 

at 0.25° from IMD for the 1901-2020 period that was developed using station-based rainfall observations from 85 

more than 6900 gauge stations (Pai et al., 2014). The gridded rainfall product has been widely used for 86 

hydrological studies (Kushwaha et al., 2021; Shah & Mishra, 2016) and it captures the key features of the summer 87 

monsoon variability and orographic rainfall over the western Ghats and foothills of the Himalayas. We obtained 88 

daily 1° gridded maximum and minimum temperatures from IMD (Srivastava et al., 2009). The gridded 89 

temperature dataset is developed using observations from 395 stations located across India. Bilinear interpolation 90 

was used to convert the 1° gridded temperature to 0.25° resolution to make it consistent with the gridded 91 

precipitation. For the regions outside India, we obtained observational meteorological datasets (rainfall and 92 

temperature) at 0.25 degrees from Princeton University (Sheffield et al., 2006). Gridded datasets from Sheffield 93 

et al. (2006) compare well against the IMD observations and have been used in hydrological applications in India 94 

(Shah & Mishra, 2016).  95 

Observed daily streamflow at gauge stations and reservoir live storage were obtained from India Water Resources 96 

Information System (India-WRIS). We considered the influence of 51 major reservoirs located in different river 97 

basins to examine the impact of reservoirs on floods using the CaMa-Flood model (Figure S1). The information 98 

of dams was obtained from the National Register of Large Dams (NRLD) [Table S1]. We used Global Surface 99 

Water (GSW) extent to estimate the flood occurrence at a monthly timescale (Pekel et al., 2016). In addition, we 100 

obtained reported flood details from the Emergency Events Database (EM-DAT, http://www.emdat.be/) and 101 

Dartmouth Flood Observatory (DFO, http://floodobservatory.colorado.edu/). EM-DAT is developed by the 102 

Centre for Research on the Epidemiology of Disasters (CRED), while the University of Colorado manages DFO. 103 

We used population data from Global Human Settlement Layers (GHLS) to estimate flood exposure. Finally, we 104 

used roadway and railway network data to assess the impact of floods on the infrastructure. 105 

2.2 H08-CaMa-Flood combined model 106 

We used the H08 (Hanasaki et al., 2018) global hydrological model to simulate hydrological variables. The H08 107 

is a distributed global water resources model comprising six sub-models: land surface hydrology, river routing, 108 

reservoir operation, crop growth, environmental flow, and water abstraction. The model estimates baseflow using 109 

a leaky bucket method, while runoff is calculated based on saturation excess non-linear flow (Hanasaki et al., 110 

2008). The H08 model can be run separately or combined with any hydrodynamic model to perform flow routing. 111 

The H08 model uses precipitation, air temperature, short and longwave radiations, wind speed, surface pressure, 112 

and specific humidity as input meteorological forcing. Soil parameters for the H08 model were obtained from 113 
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Harmonized World Soil Database (HWSD). We forced the H08 model with the input meteorological forcing at 114 

0.25° spatial and daily temporal resolution. We combined the H08 land surface model with the CaMa-Flood 115 

model. The CaMa-Flood model has been previously combined with the H08 model to obtain flood inundation 116 

estimates (C. M. Mateo et al., 2014).  117 

The CaMa-Flood (version 4.1) is a hydrodynamic model (Yamazaki et al., 2011), which simulates river-floodplain 118 

dynamics (Yamazaki et al., 2013). The CaMa-Flood model has been extensively used for better performance in 119 

simulating discharge and flood peaks (Zhao et al., 2017). The CaMa-Flood model considers the role of dams and 120 

reservoirs for streamflow and flood inundation simulations (Chaudhari & Pokhrel, 2022; C. M. Mateo et al., 2014; 121 

Pokhrel et al., 2018). We ran the CaMa-Flood model at a finer spatial resolution (0.1°) using the H08-simulated 122 

runoff (0.25°) as input. We calibrated the combined model (H08 and CaMa-Flood) for India's eighteen major river 123 

basins for one gauge station, each considering the influence of 51 major dams. The gauge stations were selected 124 

in the farthest downstream of the river basin based on the availability of observed streamflow.  125 

We manually calibrated the H08 model by adjusting four parameters for each river basin, which include single-126 

layer soil depth, gamma, bulk transfer coefficient, and tau (Hanasaki et al., 2008). We evaluated the model 127 

performance using the coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE) for daily streamflow 128 

and reservoir live storage. In addition, we compared the simulated and satellite-based observed flood occurrences. 129 

The satellite-based flood occurrence is calculated using the Global Surface Water (GSW) dataset (Pekel et al., 130 

2016), available for the 1984-2020 period. We forced the well-calibrated combined (H08 and CaMa-Flood) 131 

models with observed meteorological forcing from India Meteorological Department (IMD) at 0.25° spatial 132 

resolution to conduct simulations from 1901 to 2020. The H08 model simulated runoff is used in CaMa-Flood to 133 

rout flood dynamics at six arc-minutes (0.1 degrees). We generated the flood depth maps for the historical worst 134 

flood at the sub-basin level. The worst flood is based on the highest magnitude of river flow observed at the 135 

subbasin outlet. The generated flood depths at 6 arc-minutes (0.1°) were further downscaled to 1 arc-minute 136 

(~200m) resolution using the downscaling module available within the CaMa-Flood.  137 

We used C-ratio (Nilsson et al., 2005; Zajac et al., 2017) to estimate the potential dam effect along a river. The 138 

C-ratio is calculated as the ratio of a reservoir's total maximum storage capacity to the mean annual discharge at 139 

a selected point along the river downstream (Nilsson et al., 2005; Zajac et al., 2017). We calculated the C-ratio at 140 

the outlets of each sub-basins that are influenced by the presence of dams. A lower (less than 0.5) C-ratio indicates 141 

that the sub-basin is not considerably affected by the presence of dams. Further, we multiplied the percentage 142 

flooded area of each sub-basin with their corresponding C-ratio, which was used to identify the sub-basins that 143 

experience considerable flood inundation and are affected by the presence of reservoirs. The identified sub-basins 144 

are prone to flooding due to dam operations. Finally, we estimated the exposed rail and road infrastructure affected 145 

by floods. The flooded area overlapped over the road and railway network to estimate the network length affected 146 

by floods in a sub-basin. We considered the flooded area of the observed worst flood. The subbasins with the 147 

highest rail and road infrastructure exposure to floods were identified.  148 

2.3 Risk assessment 149 

We estimated flood risk using hazard, exposure, and vulnerability based on the common framework adopted by 150 

the United Nations in the Global Assessment Reports of the United Nations Office for Disaster Risk Reduction 151 
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(UNISDR, 2011, 2013). A similar framework was used in previous studies for flood risk assessments (C. M. R. 152 

Mateo et al., 2014; Tanoue, 2020; Winsemius et al., 2013). We multiplied the normalized values of hazard, 153 

exposure, and vulnerability to estimate the risk as: 154 

𝑅𝑖𝑠𝑘 = 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗ 𝐻𝑎𝑧𝑎𝑟𝑑    … … (1) 155 

The flood risk assessment can help identify the hotspots and prioritize climate adaptation (de Moel et al., 2015). 156 

Among the three components, vulnerability is a degree of damage to a particular object at flood risk with a 157 

specified amount and present on a scale from 0 to 1. We obtained the vulnerability index for each district from 158 

the “Climate Vulnerability Assessment for Adaptation Planning in India Using a Common Framework”, a report 159 

developed by the Department of Science and Technology 160 

(https://dst.gov.in/sites/default/files/Full%20Report%20%281%29.pdf). The vulnerability of each district is 161 

calculated using 14 indicators, each with equal weights. The indicators capture both sensitivity and adaptive 162 

capacity. We estimated the vulnerability index of each sub-basin by taking the spatial mean of the vulnerability 163 

of the districts falling into the sub-basins. Exposure is termed as assets and population in a flood-exposed area 164 

resulting in flood damage (Marchand et al., 2022). The population dataset is a critical component in performing 165 

exposure estimation. The exposure is defined as the fraction of the population exposed to the flood extent (Smith 166 

et al., 2019). We completed the flood exposure estimate using the Global Human Settlement Layers (GHSL) 167 

population dataset (Joint Research Centre (JRC) et al., 2021), which is available at a resolution of 30 arc-seconds 168 

for 1975, 1990, 2000, 2014 and 2015. We used the population data for the year 2015 throughout this study. We 169 

rescaled the population data to 6 arc-minutes to make it consistent with the flooded area simulated from the 170 

combined model. We estimated the hazard as the exceedance probability of a flooded area exceeding half of the 171 

historical maximum flooded area in the last 50 years. We used normalized vulnerability, exposure, and hazard to 172 

estimate the risk.  173 

3. Results  174 

3.1 Calibration and evaluation of hydrological models 175 

We calibrated and evaluated the performance of the H08 and CaMa-Flood combined models against the observed 176 

daily streamflow (Fig. 1). Due to the unavailability of daily observed streamflow for the three transboundary river 177 

basins (Indus, Ganga and Brahmaputra), we used observed monthly streamflow to calibrate the model. In addition, 178 

we evaluated the model performance for daily live storage of the 51 reservoirs after the calibration against the 179 

observed flow (Fig. 1). The model exhibited good skills (R2 > 0.55 and NSE > 0.5) for almost all the river basins 180 

except Cauvery, Northeast coast, and Pennar. The model also performed well (NSE > 0.5) in simulating daily live 181 

storage for the selected reservoirs. In addition, we compared model-simulated, and satellite-based observed flood 182 

occurrence for the 1984-2020 period (Fig. 2). The model exhibits satisfactory performance in simulating flood 183 

extent against the satellite-based observations. However, the model overestimates the flood extent in the Ganga 184 

basin, which can be due to the influence of cloud contamination and dense vegetation cover on satellite-based 185 

flood estimates (Chaudhari & Pokhrel, 2022). On the other hand, the model underestimates the flood occurrence 186 

in the upstream region of the Brahmaputra River. This could be due to limitations in model parameterization, as 187 

observed flow is limited in the transboundary river basins. Despite the good performance against the observed 188 

streamflow, the simulated flood extent has a considerable bias, which can be attributed to satellite-based flood 189 
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extent mapping limitations and the model's ability to capture the flood extent accurately. The model-simulated 190 

flood extent shows a good agreement against the reported flood from EM-DAT and DFO databases (Fig. S1). In 191 

addition, the simulated flood extent also showed a good agreement with the reported flood in cities in the 192 

Brahmaputra and Ganga River basins. Given the limitation in the streamflow and flood extent observations, the 193 

hydrological models perform satisfactorily and can be used for the sub-basin level risk assessment. 194 

 195 

Figure 1: Calibration and evaluation of the combined model for daily river flow and reservoir storage at 196 

gauge stations and daily live storage of reservoirs 197 
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 198 

Figure 2: Simulated flood occurrences compared with satellite-based observed flood occurrence for 199 

different regions in Ganga, Narmada and Brahmaputra River basin. 200 

3.2 Estimation of the observed flood extent 201 

Next, we reconstructed the flood inundation for the observed worst flood for each sub-basin for the 1901-2020 202 

period in India. The inundation extent for the worst flood can help us identify the sub-basin with higher flood risk. 203 

We estimated flood depth and inundated area for each sub-basin for the worst flood during the last 120 years 204 

(Figure 3). In addition, we identified the occurrence of the worst flood at the sub-basin level during the 1901-2020 205 

period. We highlighted ten sub-basins that experienced the highest fractional area affected by the worst flood. 206 

Sub-basins in the Ganga and Brahmaputra rivers are among the most highly influenced by the worst flood. For 207 

instance, Ghaghra, Kosi, Bhagirathi, Gandak, Gomti, lower Sabarmati, upper Yamuna, Ramganga, and Baitarani 208 

sub-basins had the highest fractional area affected by the worst flood during 1901-2020 (Fig. 3). The fractional 209 

area of sub-basins in the semi-arid western India is less affected compared to those located in the Ganga basin. 210 

For example, the lower Sabarmati sub-basin of the Sabarmati River basin is among the sub-basins that are highly 211 
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influenced by the observed worst flood. We also find that the worst flood in the same year did not affect all the 212 

sub-basins within a river basin. For instance, all the highly influenced sub-basins experienced the worst flood in 213 

different years in the Ganga basin (Fig. 3). Most of the top flood-affected sub-basins experienced floods during 214 

August-September in the summer monsoon season. Overall, the flood extent due to the worst flood is substantially 215 

greater in the sub-basins of the Ganga and Brahmaputra river basins compared to other basins in India (Fig. 3). 216 

Ganga river basin also has the highest population density among all the basins in the Indian sub-continent, which 217 

makes it vulnerable for the flood risk. 218 

  219 
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 220 

Figure 3: Flood depth map for the observed worst flood for each sub-basins, highlighting the sub-basins 221 

with maximum flood inundated area (%) (a) Ghaghara – Ganga River basin (b) Kosi – Ganga River basin 222 

(c) Bhagirathi and others – Ganga River basin (d) Gandak and others – Ganga River basin (e) Upstream 223 

of Gomti confluence to Muzaffarnagar – Ganga River basin (f) Gomti – Ganga River basin (g) Lower 224 

Sabarmati – Sabarmati River basin (h) Upper Yamuna  – Ganga River basin (i) Ramganga – Ganga River 225 

basin (j) Baitarani – Brahmani River basin 226 

Next, we examined the precipitation, streamflow, and flood-affected area (%) for the ten sub-basins that had the 227 

highest fractional flood affected area for the worst flood during 1901-2020 (Fig. 4). As floods mostly occur during 228 

the summer monsoon season in India (Mishra et al., 2022; Nanditha & Mishra, 2021), we examined the temporal 229 
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variability of precipitation, and streamflow during the monsoon season of the worst flood year. Nanditha and 230 

Mishra (2022) reported that multi-day precipitation is India's most robust driver of floods. Moreover, extreme 231 

precipitation and wet-antecedent conditions trigger floods in India (Nanditha & Mishra, 2022). We find that the 232 

Ghaghara sub-basin of the Ganga river experienced the worst flood in September 1915, affecting more than 10,000 233 

km2 area of the sub-basin. A multi-day rainfall in late August and early September (1915) caused the worst flood 234 

in the basin. The Kosi sub-basin of the Ganga river experienced the worst flood in August 2014, which affected 235 

more than 5000 km2 of the basin (Fig 4). Similarly, Bhagirathi and other sub-basins in the Ganga river basin were 236 

affected by the worst flood in late September 1924, which inundated more than 12000 km2 of the sub-basin. 237 

Similarly, Gandak and Gomti river basins experienced the worst floods in 1948 and 1915, respectively. We find 238 

that most of the sub-basins of the Ganga river basin are prone to large extents of flood inundation. Moreover, the 239 

worst floods in most sub-basins were caused by multi-day precipitation, a prominent driver of floods in the Indian 240 

sub-continental river basins (Fig. 4).   241 

 242 

Figure 4: Daily upstream precipitation (mm, blue), the H08 model simulated streamflow (red) at the sub-243 

basin outlet (m3/s), and flooded area (km2, green) for the summer monsoon (June-September) period of 244 

the corresponding worst flood year. (a) Ghaghara - Ganga River basin (b) Kosi - Ganga River basin (c) 245 
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Bhagirathi and others - Ganga River basin (d) Gandak and others - Ganga River basin (e) Upstream of 246 

Gomti confluence to Muzaffarnagar - Ganga River basin (f) Gomti - Ganga River basin (g) Lower 247 

Sabarmati – Sabarmati River basin (h) Upper Yamuna – Ganga River basin (i) Ramganga – Ganga River 248 

basin (j) Baitarani – Brahmani River basin 249 

To further examine the flood-affected area at the sub-basin level, we estimated the mean annual maximum flooded 250 

area (Figure 5a) and historical maximum flooded area using the H08-CaMa flood models (Figure 5b). Most of the 251 

highly flooded sub-basins are in the Ganga River basin. While the mean annual maximum flooded area for the 252 

top flood-affected sub-basins ranged between 10 to 15%, their maximum flooded area varied between 30 to 40%. 253 

Other than sub-basins from the Ganga river basin, Baitarani, lower Tapi, lower Godavari, Brahmani, and lower 254 

Mahanadi also showed a considerable mean flooded area during the 1901-1920 period. In the case of the maximum 255 

flooded area, Gandak, Kosi, and Ghaghara confluence to Gomti confluence sub-basins exhibited more than 20% 256 

flooded area. Sub-basins from the other river basins, such as lower Tapi, lower Narmada, Baitarani, and lower 257 

Satluj, are in the top fifteen sub-basins with the highest flooded area. The sub-basins in the Ganga and 258 

Brahmaputra rivers are the most flood-affected. Moreover, the Ganga and Brahmaputra rivers experience the 259 

highest floods among all the river basins (Mohanty et al., 2020; Mohapatra & Singh, 2003). 260 
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 261 

Figure 5: (a) Mean of annual maximum flooded area (percentage) between 1901-2020 and the overall 262 

distribution (b) highlighting the top fifteen sub-basin. (c) Historical maximum flooded area (percentage) 263 

and the overall distribution (d) highlighting the top fifteen sub-basin. 264 

3.3 Influence of reservoirs on flood extent  265 

We selected and considered 51 major reservoirs to examine their influence on flood risk based on the availability 266 

of the observed storage data. We estimated C-ratio for each sub-basin considering the river flow at the outlet to 267 

investigate the impact of reservoirs on streamflow. C-ratio can vary between zero to infinity, and higher values 268 

indicate the prominent effect of dams on river flow. We identified sub-basins with a greater influence on dams 269 

based on the C-ratio. We find that Beas, Brahmani, upper Satluj, Upper Godavari, Middle and Lower Krishna, 270 

and Vashishti are among the most influenced by the dams. Beas sub-basin has the highest C-ratio (4.16) among 271 

all the sub-basin in the Indian sub-continent (Figure 6a). Out of the 80 sub-basins, only eleven have C-ratio greater 272 

than 0.5. 64 out of 80 sub-basins have a C-ratio between zero to 0.42 (Figure 6a). We considered only 51 major 273 

reservoirs in our analysis. However, there are several major and minor dams for which observed data is 274 

unavailable. Therefore, the influence of reservoirs based on the C-ratio might need to be considered. However, 275 
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our analysis indicates that dams in a few sub-basins can significantly alter the river flow and flood risk. For 276 

instance, dams effectively alter extreme flow's timing, duration, and frequency (Mittal et al., 2016). C-ratio alone 277 

may not effectively capture the influence of dams on floods; therefore, we multiplied the fractional area affected 278 

by floods and the c-ratio for each sub-basins. For instance, if a sub-basin is considerably affected by dams and 279 

has a large flood extent, the value of the multiplied ratio will be higher. The multiplier ratio can effectively identify 280 

the sub-basins with high flood-affected areas and flow regulated by the reservoirs. We find that Beas, Brahmani, 281 

Ravi, and Lower Satluj are among the highly influenced by floods and the presence of reservoirs. Overall, the 282 

sub-basins with higher C ratio and the highest flood-affected area are across the Indian subcontinent. Central India 283 

has sub-basins that are relatively less affected by floods and the presence of dams. 284 
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 285 

Figure 6: (a) Sub-basin wise C-ratio, top fifteen sub-basins and distribution of sub-basins based on C-ratio 286 

values (b) Mean of annual maximum flooded area (percentage) multiplied with C-ratio (d) highlighting top 287 

15 sub-basins (c) Historical maximum flooded area (percentage) multiplied with C-ratio (e) highlighting 288 

top 15 sub-basins. 289 
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3.4 Sub-basin level flood risk assessment 290 

Next, we identified the roads (national highways) and railway exposure to riverine floods for each subbasin. 291 

Climate change will adversely affect rail and road networks (Hooper & Chapman, 2012; Padhra, 2022). A 292 

considerable length of roads is affected due to surface flooding resulting from high-intensity rain (Koks et al., 293 

2019). Therefore, we examined the impact of floods on rail and road infrastructure in India. We estimated the 294 

length of the road and railway network potentially affected by the worst flood that occurred during 1901-2020. 295 

We overlapped the road and rail network over the flooded area and estimated the network length exposed to floods 296 

(Figure 7a-b). The estimated length for each sub-basin was normalized between zero and one (Figure 7c-d). We 297 

find that the road network can be the most affected by the floods in the Gandak, Kosi and Ghaghara confluence 298 

to Gomti confluence in the Ganga river basin. On the other hand, a considerable part of the rail network can be 299 

affected by floods in Son, Kosi, and Upper Yamuna subbasins. Moreover, in Bhagirathi and Gandak river basins, 300 

more than 50 km of road network falls in the flood-prone regions (Figure 7e). There are ten sub-basins in which 301 

more than 20 km of road network falls in flood-prone areas of India. Similarly, over 20 km of the rail network is 302 

in the flood-affected areas of the six sub-basins (Upper Yamuna, Son, Kosi, Brahmani) [Figure 7f]. 303 
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 304 

Figure 7: Flood impacts on roads and railways infrastructure. (a-b) National Highways network and 305 

Railway network overlapped over the flooded area in worst flood cases, (c-d) subbasin wise normalised 306 

flood affected road and railway network (percentage), (e-f) top 15 subbasins with most affected national 307 

highways and railway length (km). 308 
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Finally, we estimated sub-basin level flood risk using normalized vulnerability, hazard, and exposure (Figure 8). 309 

Vulnerability for each sub-basin in India was assessed using the national vulnerability assessment data available 310 

at the district level. We estimated hazard probability considering 50% of the inundated area for the worst flood as 311 

a benchmark. The likelihood of flood inundated areas in a sub-basin exceeding the benchmark was used in the 312 

risk assessment. Similarly, we used the worst flood extent and gridded population data to estimate flood exposure. 313 

The sub-basins in north-central India have a relatively higher vulnerability calculated using the socio-economic 314 

indicators. The vulnerability is relatively lower in north India and the Western Ghats. Kosi, Gandak, and Damodar 315 

sub-basins have the highest vulnerability. We find that hazard probability is higher in the sub-basins of 316 

Brahmaputra, rivers in the western Ghats, and a few sub-basins of the Indus river basin (Fig. 8b). For instance, 317 

upper Satluj, Chenab, and Jhelum sub-basins of the Indus river have higher hazard probability. Other than the 318 

Western Ghats, most sub-basins in Peninsular India have relatively lesser hazard probability. Exposure, which 319 

represents the fraction of the population affected by flood under the worst flood scenario, is higher in the Indo-320 

Gangetic Plain. Apart from the sub-basins of the Ganga River basin, the lower Brahmaputra, lower Godavari, and 321 

Baitarani sub-basin show higher exposure. Therefore, Ganga and Brahmaputra Rivers basins are the highest flood-322 

prone river basins and have high flood exposure. Rentschler et al. (2022) also reported that the highest population 323 

exposure due to floods is in Uttar Pradesh, Bihar, and West Bengal, which is part of the Ganga river basin. 324 
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 325 

Figure 8: Sub-basin level (a) Normalized vulnerability index (b) Normalized hazard (c) Normalized 326 

exposure (d) Normalized risk. The top 10 sub-basins are highlighted as bars in panels inside the figures. 327 

We estimated the flood risk for each sub-basin, a collective representation of vulnerability, hazard, and exposure. 328 

As expected, the flood risk is higher in the Ganga and Brahmaputra river basins compared to other parts of the 329 

country. The higher flood risk in these basins can be attributed to higher vulnerability, hazard probability, and 330 

exposure. For instance, Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghra are the sub-basins with the 331 

highest flood risk in India (Fig. 8d). Despite the higher hazard probability in the sub-basins of the Indus and west 332 
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coast river basins, the overall flood-risk is considerably lower than the sub-basins of the Ganga and Brahmaputra 333 

river basins primarily due to less vulnerability and exposure. Our results show that flood risk in some of the sub-334 

basins of the Ganga and Brahmaputra river basins can be reduced by reducing the vulnerability. 335 

4. Discussion and conclusions 336 

Flood risk mapping is essential for risk reduction and developing mitigation measures. The flood risk will likely 337 

increase due to increased hazard probability and exposure (Ali et al., 2019). Hirabayashi et al., 2013) showed that 338 

a warmer climate would increase the risk of floods on a global scale. In India also, floods are more likely under 339 

warming climate. For instance, Ali et al. (2019) reported that multi-day floods are projected to rise faster than 340 

single-day flood events. The projected rise in the flood frequency in India can be attributed to increased extreme 341 

precipitation under warming climate (Mukherjee et al., 2018). Observational studies have also concluded that 342 

there has been a considerable rise in extreme precipitation in India during the summer monsoon season (Roxy et 343 

al., 2017), which is linked to warming climate. While the warming climate is directly linked to the increased 344 

frequency of extreme precipitation, its association with riverine floods is not straightforward. For instance, 345 

(Nanditha & Mishra, 2021, 2022) reported that multi-day precipitation on the wet antecedent condition is the two 346 

most favourable conditions for riverine floods in India. 347 

While mapping the flood risk at appropriate spatial resolution is complex and challenging, it is vital for disaster 348 

risk reduction. Flood inundation mapping that provides the spatial extent of flooding is crucial as the first 349 

responders use it during a flood emergency (Apel et al., 2009). There are several approaches to mapping flood 350 

inundation (Teng et al., 2017). We used hydrodynamic modelling to develop long-term flood inundation maps for 351 

the Indian sub-basins. Creating higher-resolution flood inundation maps based on hydrodynamic modelling is 352 

computationally expensive (Dottori et al., 2016). In addition, higher-resolution flood risk mapping that can be 353 

used at the local scale for decision-making requires accurate terrain information and river cross-section datasets 354 

that are not available. Given these limitations, our findings provide valuable information based on the long-term 355 

record developed using model simulations that can be used for the regional scale policy development for flood 356 

mitigation. Cloud cover during the summer monsoon, when most floods occur in India (Nanditha et al., 2022), 357 

hinders the utility of satellite data for flood inundation mapping. We calibrated and evaluated our H08-CaMa 358 

flood modelling framework using the observed flow, reservoir storage, and satellite-based inundation. However, 359 

all these datasets available from the in-situ network or satellites are prone to errors and uncertainty (Di Baldassarre 360 

& Montanari, 2009; Stephens et al., 2012; Teng et al., 2017).  361 

Notwithstanding the considerable investments and flood-control measures, India has witnessed substantial 362 

mortality, human migration, and economic loss. Flood mortality has increased mainly because of increased 363 

frequency, not necessarily due to increased flood intensity (Hu et al., 2018). About 3% of the total geographical 364 

area of India is affected by floods every year that cause damage to agriculture and infrastructure. The top ten 365 

floods that occurred during 1985-2015 caused the mortality of more than 1000 people while more than 35 million 366 

people were displaced due to floods between 2000-2004 (Dartmouth Flood Observatory). The recent riverine 367 

floods in Uttarakhand and Kerala highlighted the growing flood risk in India, which warrants the need for flood 368 

mitigation. The recent flood in August 2022 in Pakistan caused an estimated loss of $30 billion. Both structural 369 

and non-structural measures are required for flood mitigation (Nanditha & Mishra, 2021). Our risk assessment 370 
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provides policy implications towards reducing vulnerability to reduce the flood risk. Moreover, a sub-basin level 371 

ensemble forecast is needed to be used for early flood warnings in the sub-basins with higher flood risk. 372 

Based on our findings, the following conclusions can be made: 373 

• The coupled hydrological and hydrodynamic modelling framework based on the H08-CaMa Flood model 374 

was used to estimate the flood risk assessment in India. The hydrological modelling framework 375 

performed well against the observed flow, reservoir storage, and satellite-based flood inundation. The 376 

role of 51 major reservoirs was considered in flood risk assessment based on the long-term simulations 377 

for the 1901-2020 period. 378 

• The sub-basins in the Ganga and Brahmaputra river basins experienced the most significant flood extent 379 

during the worst flood in 1901-2020. Similarly, the mean annual maximum flood extent is higher for the 380 

sub-basins in the two major transboundary river basins (e.g., Ganga and Brahmaputra). The worst flood 381 

affected different sub-basins on the two main flood-affected river basins in different years. Major floods 382 

in the flood-prone sub-basins of the Ganga and Brahmaputra basins occur during the summer monsoon 383 

season, especially during the August-September period. 384 

• The sub-basins with a more prominent influence of dams based on the C-ratio were identified. Beas, 385 

Brahmani, upper Satluj, Upper Godavari, Middle and Lower Krishna, and Vashishti sub-basins are 386 

among the most influenced by the dams. Moreover, Beas, Brahmani, Ravi, and Lower Satluj are among 387 

the most affected by floods and the presence of reservoirs.  388 

• Flood risk is higher in the Ganga and Brahmaputra river basins compared to other parts of the country. 389 

The higher flood risk in the two transboundary river basins can be attributed to higher vulnerability, 390 

hazard probability, and exposure. Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghra are India's 391 

sub-basins with the highest flood risk.   392 
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